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Continuous innovations in adaptive matched-field processing (MFP) algorithms have presented significant increases in 
computational complexity and resource requirements that make development and use of advanced parallel processing 
techniques imperative.  In real-time sonar systems operating in severe underwater environments, there is a high likelihood 
of some part of systems exhibiting defective behavior, resulting in loss of critical network, processor, and sensor elements, 
and degradation in beam power pattern.  Such real-time sonar systems require high reliability to overcome these 
challenging problems.  In this paper, efficient fault-tolerant parallel algorithms based on coarse-grained domain 
decomposition methods are developed in order to meet real-time and reliability requirements on distributed array systems 
in the presence of processor and sensor element failures.  The performance of the fault-tolerant parallel algorithms is 
experimentally analyzed in terms of beamforming performance, computation time, speedup, and parallel efficiency on a 
distributed testbed.  The performance results demonstrate that these fault-tolerant parallel algorithms can provide real-time, 
scalable, lightweight, and fault-tolerant implementations for adaptive MFP algorithms on distributed array systems. 

1. Introduction 

Over the past decade, the rapid improvement of signal processing algorithms and better understanding of 
signal and ocean environment models have resulted in the development of advanced beamforming 
algorithms for highly cluttered environments.  In particular, matched-field processing (MFP) is the process 
of cross-correlation of a measured field with a replica field derived from the spatial point source response 
of the medium19. The MFP algorithm localizes acoustic sources in range, depth. and azimuth more precisely 
than plane-wave beamforming methods by using a full-wave acoustic propagation model instead of a 
simple plain-wave acoustic propagation model for the ocean20.  Continuous innovations in adaptive MFP 
algorithms have presented a significant increase in computational complexity that makes development and 
use of high-performance processing systems imperative in real-world applications1.  In real-time sonar 
systems operating with battery power in severe underwater environments, there is a high probability of 
some part of the system exhibiting faulty behavior at any given time.  Specifically, the principal source of 
failures during missions is node-outage due to battery run-down.  Such failures might result in failure of 
interconnection network, distortion in beam power pattern, and loss of critical processor and sensor 
elements2.  As a result, such real-time sonar systems require high dependability to tolerate these failures in 
typically severe underwater environments.  High-performance, efficient and fault-tolerant processing 
methods are necessary in order to assure high reliability and meet the real-time requirements of distributed 
sonar array systems in spite of the high probability of processing and sensor failures. 

Strategies for fault tolerance can be categorized into algorithm-based, system-level, and application-
level methods depending on how and where fault tolerance capabilities are applied to systems.  Algorithm-
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based mechanisms use redundant computations within the algorithms to detect and correct errors caused by 
permanent and/or transient faults in the hardware3.  This technique is highly algorithm-dependent and has 
only been applied to a handful of problems with redundant computations4.  However, this technique has 
advantages in terms of low overhead and cost when compared with traditional fault-tolerant techniques.  
This method is employed for simple applications including checksum matrix operations, matrix inversions, 
and the QR decomposition method5.  System-level fault tolerance includes redundancy in all system 
hardware and software components in which recovery actions are undertaken by the system.  This 
technique involves significant redundancy and recovery time because considerable replication and process 
checkpointing with system hardware and software is necessary in order to make the system transparent to 
applications and programmers.  However, this method can be easily incorporated into a system with little 
work on the part of the application developers.  An example of system-level fault tolerance for distributed 
computing environments is MPICH-V6, an implementation of the message-passing interface (MPI) 
standard that can tolerate loss of volatile resources using a checkpointing method21, 22.  Finally, application-
level techniques have redundancy and recovery actions embedded within the applications themselves, 
thereby providing efficient and low overhead in fault tolerance by employing information only available at 
the application level7.  This technique allows higher fidelity detection and handling of faults than system-
level or algorithm-based techniques.  It can reduce substantial computational load and redundancy since 
replication and architecture-dependent checkpointing can be avoided.  The application-level fault-tolerant 
method has been used for sonar beamforming and radar tracking algorithms7 and is an attractive alternative 
to reduce extensive hardware and software redundancy in system-level fault tolerance schemes. 

High-performance parallel computing techniques have been employed to reduce intensive 
computational load and improve dependability in various beamforming applications.  Fault tolerance in 
autonomous acoustic arrays has been studied to examine the effects of sensor failures on overall system 
performance and derive simple and cost-effective techniques to reduce such effects2.  Parallel beamforming 
algorithms have been developed for split-aperture conventional beamforming8, adaptive minimum variance 
distortionless response (MVDR) beamforming9, 10, and MFP11, 12 algorithms.  These parallel algorithms 
based on control and domain decomposition for several beamforming applications achieved promising 
performance in terms of scalability and resource requirements on distributed computing systems.  However, 
if there are processing and sensor element failures in distributed sonar array systems, these parallel 
algorithms do not address fault-tolerant mechanisms to recover from the failures. 

In this paper, efficient and lightweight fault-tolerant parallel algorithms for adaptive MFP algorithms 
are developed to tolerate such failures in distributed sonar array systems.  In order to reduce the overhead 
and redundancy of fault tolerance, application-level fault recovery schemes that take advantage of the 
information only available at the application level are used.  Two robust MFP algorithms13 are employed to 
compensate for the impacts of sensor failures, and two new fault-tolerant parallel algorithms are developed 
respectively.  The fault-tolerant parallel algorithms are dynamic frequency decomposition and dynamic 
section decomposition methods based on domain decomposition and achieve low overhead, minimum 
redundancy, and fast recovery time in distributed array systems.  The fault-tolerant parallel algorithms are 
experimentally analyzed in terms of computation time, speedup, parallel efficiency, and beamforming 
performance on a distributed PC cluster. 

The rest of paper is organized as follows.  Section 2 provides an overview of the robust MFP 
algorithms.  Section 3 discusses the computational tasks and control flow diagrams of the sequential robust 
MFP algorithms.  In Section 4, the configurations and features of the two fault-tolerant parallel algorithms 
are explained and in Section 5, their computational and communication characteristics are investigated.  
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Section 6 experimentally analyzes performance results of the fault-tolerant parallel algorithms on a 
distributed testbed.  Finally, Section 7 ends with conclusions and directions for future research. 

2. Overview of Robust MFP Algorithms 

The minimum variance distortionless response MFP (MVDR-MFP) algorithm adaptively attempts to pass a 
signal received from the desired point with unity gain and suppresses signals arriving from all the other 
points14.  This adaptive MFP algorithm localizes the source more accurately than conventional MFP with 
moderate levels of signal-to-noise ratio (SNR) and precise knowledge about environments since it provides 
significant interference rejection and sidelobe suppression.  However, MVDR-MFP is sensitive to 
mismatches such as inaccurate knowledge of the environmental parameters and element failures.  In this 
paper, two robust MFP algorithms namely multiple-constraint MVDR-MFP and reduced-rank MVDR-MFP 
are used to tolerate sensor element failures in the distributed array systems.  The two robust MFP 
algorithms are overviewed briefly in the following sections. 

2.1. Multiple-constraint MVDR-MFP algorithm 

Multiple-constraint MVDR matched-field processing (MCMVDR-MFP) calculates an optimal weight 
vector for the array by using linear multiple constraints.  MCMVDR-MFP employs the multiple-constraint, 
matched-field processor derived by Schmidt et al15 whose performance is subtle to the choice of the 
constraints.  In this paper, to minimize the impact of element failures, the MCMVDR-MFP algorithm 
applies additional constraints to MVDR-MFP instead of using a single constraint.  These constraints are 
composed of unity gain for the desired point as in MVDR, and zero gain for all the defective elements.  For 
M given constraints, MCMVDR-MFP calculates the optimal weight vector to minimize output power 
Smcmvdr, while maintaining M constraints given as 

 
                                                                                                                                                                (1) 

 
where w is the weight vector of MCMVDR-MFP, R is the cross-spectral matrix (CSM) of the input data for 
the array, ei is the constraint vector for the ith constraint point, and di is the constraint value for the ith 
constraint point15.  Solving Eq. (1) using the Lagrange multiplier method, the weight vector is derived as 
 

                                                                                                                                                                (2) 
 
where ]|..||[ 21 MeeeE = is the constraint replica matrix and T

MdddD ],..,,[ 21=  represents the 
constraint column vector.  Finally, by substituting wmcmvdr from Eq. (2) into Eq. (1), the output power for a 
steering position (r, z) is obtained as 
 

                                                                                                                                                                (3) 
 

where Smcmvdr is the detection factor at range r and depth z that indicates the likeliness of detection for a 
given data set.  In this algorithm, selecting suitable constraints for a given environment and system is 
essential in order to achieve better performance.  The multiple linear constraints for MVDR-MFP are 
selected to have unity gain for the desired point and zero gain for the defective elements13. 
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2.2. Reduced-rank MVDR-MFP algorithm 

The reduced-rank MVDR matched-field processing (RRMVDR-MFP) algorithm16 is used to compensate 
for element failures by projecting the array output vectors into a lower dimensional subspace while 
preserving the signal vectors.  The CSM is transformed into the eigensubspace and the K subspaces 
preserving signals out of N (K ≤ N) are selected by using a subspace selection criteria.  Next, the reduced 
subspace is used to calculate the pseudo-inverse of the CSM, optimal weighting vectors, and finally the 
beamforming output response.  By applying an eigen-decomposition method, the CSM is decomposed into 
a set of eigenvectors and eigenvalues given as  

 
                                                                                                                                                                (4) 

 
where ]|..||[ 21 nuuuU = is the orthogonal matrix whose columns are composed of the eigenvectors ui 

associated with λi and ]...[ 21 ndiagL λλλ= is the diagonal matrix whose diagonal elements consist of the 
eigenvalues λi                          which are sorted in decreasing order.  As shown in Eq. (4), the CSM is 
divided into two summation terms of the eigenvectors and eigenvalues where the first term is composed of 
the signal eigenvectors associated with the K largest eigenvalues and the other consists of the noise 
eigenvectors corresponding to the (N-K) smallest eigenvalues.  When there are faulty elements in the array, 
the noise vectors associated with small eigenvalues, which disproportionately affect the MVDR output,    
degrade the spectral output of the MVDR beamformer23.  RRMVDR-MFP excludes the noise eigenvectors 
corresponding to the least significant eigenvalues and reduces the rank of CSM from N to K.  Thus, the 
formation of the weight vector for RRMVDR-MFP is calculated as 

                                                                                                                                           
 
                                                                                                                                                                (5) 

 
 
where p is the replica vector calculated from the complex acoustic propagation model for the ocean and K 
is the rank of the reduced CSM.  The final spectral output of RRMVDR-MFP is given in Eq. (6). 
 

                                                                                                                                                                                                          
                                                                                                                                                                (6) 
 
 

RRMVDR-MFP can achieve enhanced robustness by excluding noise vectors distorted by the element 
failures and environmental mismatch. 

3. Sequential Robust Algorithms 

As described in the previous section, two robust algorithms are employed to compensate for the 
performance degradation presented by sensor element failures.  To build baselines for the fault-tolerant 
parallel algorithms, the two robust algorithms are applied to two dynamic parallel decomposition 
algorithms discussed in Section 4.  In the following sections, sequential MCMVDR and RRMVDR 
algorithms are presented in detail, respectively. 
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3.1. Sequential MCMVDR-MFP algorithm 

The computational tasks of the MCMVDR-MFP algorithm include Fast Fourier Transform (FFT), cross-
spectral matrix calculation (CSM), CSM inversion (INV), steering, and broadband averaging as depicted in 
Fig. 1.  The FFT stage transforms the input sample data received by the array of sensors from time domain 
to frequency domain.  The computational complexity of the FFT task implemented by the radix-2 butterfly 
method is generally O(LlogL) in terms of data length L.  However, the FFT stage in MVDR-MFP has a 
complexity of O(N) in terms of the number of sensor nodes because the FFT process is simply replicated 
for each sensor node and the FFT data length is fixed.  

The CSM stage calculates the CSM of the input data vector in the frequency domain.  The 
computational complexity of this stage is O(N2) in terms of the number of sensor nodes.  The inversion 
stage calculates the inverse CSM matrix.  The computational intensity of matrix inversion increases with 
the size of matrix and there exist numerous inversion techniques to reduce computation time.  In this paper, 
the Gauss-Jordan elimination (GJE) method17 is employed to calculate the inverse CSM since it is a widely 
used technique in beamforming applications with a relatively small memory requirement.  The 
computational complexity of the inversion stage using the GJE method is O(N3) in terms of size of the 
matrix. 
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Fig. 1.  Computational block diagram of the sequential MCMVDR-MFP algorithm. 

The steering stage is responsible for steering an array and calculating the output power for every 
steering position.  The steering stage calculates the output power from the inverse CSM and the replica 
vectors over the grid points where sources are likely to be present.   The complexity of the steering stage 
for the narrowband MCMVDR-MFP beamformer is O(RDFN2) because the steering loop has a complexity 
of O(FN2) in terms of the number of nodes N and the number of faulty nodes F and is executed as many 
times as the number of range R and depth D grid points shown in Fig. 1.  Along with calculation of output 
power, the steering stage includes the replica vector generation task that is invariant to input data.  The 
computational procedure for replica vector generation is described in detail by Porter18.  The replica vector 
generation task has high-order complexity due to its computationally intensive procedures such as 
eigenvalue and eigenvector computations.  However, as with the FFT stage complexity, the complexity of 
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the replica vector generation is linear with respect to the number of nodes since each sensor node is 
required to generate the replica vectors for entire range and depth points separately.  Despite the linear 
complexity of the task in terms of N, the computational burden presented by the replica vector generation 
task is very significant due to a substantial scalar factor.  Among all the computational tasks in this 
experiment, the steering stage is the most computationally intensive.  Moreover, the steering stage has a 
linear complexity in terms of the number of faulty nodes and the computational load of this steering stage is 
significantly increased as the number of faulty nodes increases. 

The broadband averaging stage is required to calculate the average beamformer output for multiple 
selected frequency bins.  Interference signals in the sidelobe are smoothed and signals near the main lobe 
are enhanced by incoherently averaging the narrowband beamformer outputs over selected frequency bins, 
because the positions of sidelobes are generally frequency-dependent whereas the location of the main lobe 
remains constant24.  The incoherent broadband MVDR-MFP beamformer output is given by 

 
                                                                                                        
                                                                                                                                                         (7) 
 
 

where B is the number of frequency bins selected from the FFT output, fi represents the ith
 frequency bin, 

and Smcmvdr(fi, r, z) is the narrowband output power of the MCMVDR-MFP algorithm for the ith frequency 
bin.  The narrowband processing including the CSM, inversion, and steering stages for each individual 
frequency bin is performed as many times as the number of the selected frequency bins for broadband 
processing.  Hence, as the number of frequency bins is increased, the MCMVDR-MFP beamformer has to 
compute more narrowband beamforming results.  This broadband processing vastly increases the 
computation time of the MCMVDR-MFP algorithm.  Finally, the outermost loop including all stages of the 
MCMVDR-MFP algorithm is performed once every iteration using one snapshot of input data from an 
array of sensors.  

3.2. Sequential RRMVDR-MFP algorithm 

The computational tasks of the RRMVDR-MFP algorithm include Fast Fourier Transform (FFT), CSM, 
eigen-decomposition (ED), steering, and broadband averaging.  In RRMVDR-MFP, the FFT, CSM, and 
broadband averaging computational stages are the same as in MCMVDR-MFP albeit with Srrmvdr in the 
latter stage instead of Smcmvdr.  Fig. 2 shows the computational block diagram of RRMVDR-MFP.  The 
computational flow diagram of this algorithm is the same as that of the MCMVDR-MFP algorithm 
described in Section 3.1 except for the eigen-decomposition stage.  The eigen-decomposition stage 
transforms the CSM into the eigenvalue and eigenvector subspaces.  The reduced subspace preserving 
signal information is selected by using subspace selection criteria and is used to calculate the pseudo-
inverse of the CSM instead of using a matrix inversion method.  The Jacobi transformation method17 is 
used to transform the CSM into the eigensubspace and involves a computational complexity of O(N3) with 
regard to size of the matrix.  The steering stage calculates the output power of narrowband frequency bins 
by using the reduced subspace as in Eq. (6).  The steering stage is performed as many times as the number 
of grid points to steer an array for all possible locations of sources under consideration.  The average output 
power for the selected frequency set is obtained in the broadband averaging stage.  The CSM, ED, and 
steering stages are repeated for the number of selected frequency bins for broadband processing. 
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4. Fault-tolerant parallel Algorithms for Robust MFP Algorithms 

As described in the previous sections, the robust MVDR-MFP algorithms with a large number of sensor 
nodes, a wide range of frequency bins, and dense grid points require both significant computational 
complexity and high dependability.  Fault-tolerant parallel processing can be a lightweight solution to 
execute the robust MFP algorithms in real-time and to provide high reliability on distributed array systems.  
The fault-tolerant parallel algorithms are designed to tolerate node failures on distributed array systems, 
which consist of smart processing nodes connected through communication networks.  In this paper, four 
fault-tolerant parallel algorithms are developed with the two robust MFP algorithms using coarse-grained 
domain decomposition methods to exploit more concurrency, dependability, and lower communication 
overhead.  The following sections describe the two fault-tolerant parallel algorithms: dynamic frequency 
decomposition and dynamic section decomposition. 
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Fig. 2.  Computational block diagram of the sequential RRMVDR-MFP algorithm. 

4.1. Dynamic frequency decomposition algorithm 

The two robust MFP algorithms have concurrency between beamforming operations of different frequency 
bins since processing of one frequency bin can be executed in parallel with another frequency bin.  
Dynamic frequency decomposition (DFD) is a dynamic decomposition method extended from the 
frequency decomposition (FD) algorithm12 which statically allocates tasks for different subsets of frequency 
bins to distinct processors.  When there are node failures resulting in workload imbalance between nodes, 
DFD dynamically reallocates processing for different subsets of frequency bins within a given 
beamforming iteration to non-faulty nodes.  DFD is an input domain decomposition technique that exploits 
data parallelism between processing tasks of different frequency bins.  In the presence of faulty nodes, the 
CSM data assigned to the faulty nodes must be preserved for recovery.  A checkpointing method that stores 
the CSM data of each node and rolls back to the previous checkpoint can be used to recover when a node is 
faulty.  Such checkpointing methods present severe communication and recovery time.  To reduce such 
additional communication and recovery time, each node calculates the CSM data for all the frequency bins, 
stores it in memory, and uses it when needed.  Hence, the CSM stage is excluded from the parallel 
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implementation in the DFD algorithm since the sequential fraction of this computationally simpler stage is 
not expected to cause a substantial computational load. 

In a distributed array system, the FFT output data from each node must be transmitted to other 
processors for a subsequent beamforming stage.  Each node is only responsible for performing the partial 
beamforming output for a subset of narrowband frequency bins, and therefore each node must share its 
beamforming output of all grid points to calculate the average of the total beamforming output for all 
broadband frequency bins.  DFD requires two all-to-all communications in each node per iteration, where 
one all-to-all communication is needed to distribute the FFT data and the other to collect the narrowband 
beamforming output.  To lessen the communication load, a data packing method is employed to combine 
the partial beamforming output of the previous iteration and the FFT data of the current iteration as one 
data packet.  This data packing decreases the communication cost by eliminating the overhead of initiating 
communications twice per iteration.  However, the DFD algorithm still needs a significantly large 
communication message size due to the partial beamforming results, since the partial beamforming outputs 
of all grid points on the search space impose a substantially large communication message on each node as 
in the FD algorithm. 

As shown in Fig. 3, each node performs an FFT operation on the input data received from its own 
sensor for the current iteration.  Each node performs data packing for the FFT output data from the current 
iteration and the partial beamforming output from the previous iteration, and then executes an all-to-all 
communication for this data packet.  Each node obtains the final beamforming output from the previous 
iteration by averaging the beamforming output for broadband frequencies.  In the 3-node array 
configuration, the FFT data from the current iteration is communicated to all the other nodes as in FD.  In 
this paper, it is assumed that the faulty nodes are detected by the MPI middleware.  Thus, the master node 
emulates the status of faulty nodes by using a fault injection module and sends the status of all nodes to the 
other nodes through the data packet.  If two other nodes detect that a node is defective, the faulty node is 
removed from this parallel processing.  Thus, tasks for all frequency bins are dynamically reassigned to the 
non-faulty nodes.  For instance, if node 1 is faulty, half the frequency bins are dynamically reassigned to 
node 0 and the other half to node 2.  And each node then calculates CSM for all the frequency bins and 
carries out the inversion and steering stages for its assigned frequency bins to calculate a narrowband 
beamforming output over all grid points.  The narrowband beamforming output is added to the running sum 
to obtain the partial beamforming outputs for the assigned frequency bins per node.  The above 
beamforming procedures are repeated for the next iteration.  As the number of nodes is increased, the 
message size of each communication per node is fixed since the partial beamforming outputs over all the 
grid points and all the FFT output data for the selected frequency bins are sent to other nodes. 

          

  
Fig. 3.  Block diagram for dynamic frequency decomposition in a 3-node array. 
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4.2. Dynamic section decomposition algorithm 

Dynamic section decomposition (DSD) is based on data parallelism between beamforming tasks of 
different grid points in the two robust MFP algorithms.  The DSD algorithm is a dynamic decomposition 
technique extended from the section decomposition (SD) algorithm12 which distributes processing of 
different subsets of grid points within a given beamforming iteration into different processing nodes in the 
output domain.  When there is workload imbalance between nodes in the presence of node failures, DSD 
dynamically reallocates processing for different grid points into the non-faulty nodes.  The DSD algorithm 
has a sequential dependency between the INV/ED stage and the steering stage because full spectrums of the 
inverse CSM or the eigensubspace are required for the calculation of the beamforming output for a single 
grid point.  Therefore, the INV/ED stage is excluded from the parallel implementation in the DSD 
algorithm.  This sequential fraction in ED will highly increase the parallel execution time with a large 
number of nodes in DSD since the ED stage using the Jacobi transformation requires much higher 
computational complexity than the INV stage even though both stages have the same cubic complexity in 
terms of the number of nodes.  The ED stage requires that the loop having complexity of O(N3) is repeated 
on the order of 20 times to achieve convergence in the calculation of eigenvectors and eigenvalues17.  In the 
DSD algorithm, each node requires two all-to-all communications as in DFD.  To lessen this 
communication load, the data packing technique is used in the DSD algorithm as well, resulting in one all-
to-all communication per iteration.  As the number of nodes is increased, the message size of each 
communication is decreased in the DSD algorithm because the number of beamforming outputs for fixed 
number of grid points is divided across multiple nodes while the message size is fixed in the DFD 
algorithm as discussed in the previous section.  

The block diagram in Fig. 4 illustrates the DSD method for a 3-node array.  In the DSD algorithm, 
each node performs the FFT task, the data packing operation, and an all-to-all communication between 
nodes similar to the DFD algorithm.  Each node executes the CSM and INV/ED stages to obtain the inverse 
CSM in MCMVDR-MFP or the eigensubspace of the CSM in RRMVDR-MFP from the current iteration.  
In the 3-node array configuration, the overall grid points from the current iteration are distributed to the 
three nodes.  The first subset of grid points are allocated to node 1, the second subset of grid points to node 
2, and so on.  When two nodes detect the third node as faulty, the faulty node is removed from this parallel 
processing.  The beamforming tasks for all grid points are dynamically reassigned to the non-faulty nodes.  
For instance, if node 2 is faulty, beamforming operations for half the grid points are reassigned to node 0 
and those for the other half grid points to node 1.  For its assigned subset of grid points, each node performs 
the steering task to obtain partial beamforming outputs for all the selected frequency bins and then 
calculates the average of the beamforming outputs of broadband frequency bins.  The above beamforming 
processes are repeated for the next iteration.  In the DSD algorithm, it is expected that the communication 
latency will be lower than that of the DFD algorithm because the message size for each communication is 
decreased with increased system size. 
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Fig. 4.  Block diagram for dynamic section decomposition in a 3-node array. 

5. Computational Complexity and Communication 

In this section, we analyze computational complexity, communication pattern and message size for the 
fault-tolerant parallel algorithms described in Section 4.  The computational complexities of the two robust 
algorithms are shown in Table 1 where N is the number of nodes, B is the number of frequency bins, R is 
the number of range points, D is the number of depth points, F is the number of faulty nodes, and K is the 
rank of the reduced CSM.  When broadband averaging is implemented, the broadband averaging is partially 
calculated in the steering stage to reduce necessary memory, and its execution time is relatively small 
compared to other stages.  Thus, the complexity and execution time of the broadband averaging is included 
in that of the steering stage. 

As described in Section 3, in the sequential robust algorithms with a fixed number of data points per 
sensor, the FFT stage for all sensor nodes requires a computational complexity of O(N).  The CSM stage 
involves a complexity of O(BN2), and the INV/ED stage has a complexity of O(BN3).  The steering stage of 
the MCVMDR-and RRMVDR-MFP algorithms has a complexity of O(BRDFN2) and O(BRDNK), 
respectively.  The computational complexities of all the stages in the two fault-tolerant parallel algorithms 
except the CSM and INV/ED stages are reduced by a factor of N compared to the sequential algorithms.  
This behavior is because all the parallel algorithms distribute their computational loads into N nodes.  
However, the computational complexities of the CSM stage in DFD, and the CSM and INV/ED stages in 
DSD, are not decreased since these stages are excluded from the parallel implementation due to their 
dependency between computational tasks.  It should be noticed that as the number of faulty nodes increases, 
the computational complexity of MCMVDR-MFP is linearly increased but that of RRMVDR-MFP is not13.  

Table 1.  Computational complexities of sequential and fault-tolerant parallel algorithms. 

 MCMVDR RRMVDR 

 Sequential DFD DSD Sequential DFD DSD 

FFT O(N) O(1) O(1) O(N) O(1) O(1) 

CSM O(BN2) O(BN2) O(BN2) O(BN2) O(BN2) O(BN2) 

Inversion/Eigen-
decomposition O(BN3) O(BN2) O(BN3) O(BN3) O(BN2) O(BN3) 

Steering O(BRDFN2) O(BRDFN) O(BRDFN) O(BRDNK) O(BRDK) O(BRDK) 
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The communication patterns and message sizes of the two parallel algorithms are shown in Table 2.  

Here the number of frequency bins used is 64, the number of grid range and depth points is 40 and 80, 
respectively, and the number of sensor nodes is N.  Each unicast communication message is composed of 
the status data of all the nodes, the FFT data, and the partial beamforming output data.  An all-to-all 
communication scheme that requires N(N−1) send/receive unicast communications is used for both DFD 
and DSD algorithms.  As the number of nodes is increased, the message size of each communication is 
fixed for the DFD algorithm, but that of the DSD algorithm decreases as shown in Table 2.  From these 
communication characteristics, it will be expected that the DFD algorithm has higher communication load 
than the DSD algorithm. 

6. Experiment and Performance Analysis 

The performance of the fault-tolerant parallel algorithms is experimentally analyzed on a distributed 
platform which has multiple processing units connected by loosely coupled communication links.  The 
testbed is a Linux-based cluster of 32 PCs where each node consists of a 1.33 GHz AMD Athlon processor 
with 256 MB of memory.  The interconnection fabric between computers is 100 Mbps switched Fast 
Ethernet.  The MPICH-1.2.5 middleware is employed to communicate and synchronize between processors 
in this distributed cluster. 

The system and problem parameters used in these experiments are 64 frequency bins, 40 grid points in 
range, 80 grid points in depth, and up to 32 nodes.  In this section, parallel performance factors are 
analyzed in terms of sequential and parallel execution times, speedup, and parallel efficiency to 
demonstrate the effects of the fault-tolerant parallel algorithms presented in the previous sections.  In these 
experiments, the execution and communication times for one beamforming iteration are measured in terms 
of the average number of CPU clock cycles instead of using the wall clock time. 

Table 2.  Communication pattern and message size of fault-tolerant parallel algorithms. 

 DFD DSD 
Pattern All-to-all communication All-to-all communication 

Number  of 
communications per 

iteration 

N(N−1) send/receive 
communications 

N(N−1) send/receive 
communications 

Message size per 
communication 

8 + ( # of frequency bins × 2 
+  # of grid points) 

× # of bytes per double (8) 
= 26632 bytes 

8 + (# of frequency bins × 2 × 8) 
+  (# grid points × 8 ÷  # of nodes) 

= 1032 + (25600 ÷ N) bytes 

6.1. Beamforming performance 

The two robust MFP algorithms are implemented with the fault-tolerant parallel algorithms in the 
distributed PC cluster and the ambiguity surfaces are investigated to verify if they localize a source position 
exactly in the presence of node failures.  For a given set of environmental and system parameters, the final 
beamforming output is commonly depicted as an ambiguity surface.  The pressure field data was generated 
by the Kraken normal mode model for a point source which is located at 60 m in depth and 10 km in range, 
and has 200 Hz frequency and 10 propagating modes.  The vertical line array contains 32 hydrophones 
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spaced at 3 m apart from 10 m to 103 m in depth.  The noise component for each hydrophone is a Gaussian 
distribution with zero mean and SNR of 10 dB. 

Fig. 5 shows the ambiguity surfaces of MVDR-MFP and the two robust MFP algorithms, where the 
16th, 18th, and 20th nodes are defective and SNR is 10 dB.  The defective nodes have zero input signals since 
it is assumed that the array of sensors receives no pressure field from the defective elements.  It can be seen 
that the MVDR-MFP algorithm localizes the source correctly at 60 m in depth and 10 km in range, but 
generates much higher sidelobe levels and background noises than the two robust algorithms due to the 
element failures.  As shown in Figs. 5b and 5c, the MCMVDR-MFP and RRMVDR-MFP algorithms 
achieve better localization performance than MVDR-MFP by suppressing sidelobes and background noises 
caused by the element failures.  

In order to provide a means of quantifying characteristics of the ambiguity surface, the peak-to-
background ratio is defined as µµ /)( −= pPBR  where p is the peak value and µ is the mean background 
level which is calculated by excluding a small number of points around the peak.  PBR is extensively used 
as a concrete performance metric in beamforming applications 25.  A higher PBR implies that performance 
of source localization is better.  The peak-to-background ratios for random faulty-node configuration were 
calculated from 50 independent trials of the noise and faulty-node position.  PBR of the robust MVDR-
MFP algorithms is depicted in Fig. 6a in terms of SNR of 10 dB and up to eight faulty nodes.  The faulty 
nodes are randomly distributed at any position in the array as many as a given number of defective 
elements.  As the number of faulty nodes increases, the PBR of MVDR-MFP rapidly decreases due to the 
mismatch generated by faulty nodes.  However, MCMVDR-MFP and RRMVDR-MFP algorithms achieve 
better beamforming performance than the MVDR-MFP algorithm for the given defective elements.  Fig. 6b 
illustrates the PBR of these algorithms in terms of the same configurations but in this case with -10 dB 
SNR.  As SNR decreases, the PBR of the robust algorithms decreases as expected.  The performance of the 
robust algorithms with SNR of -10 dB follows almost the same trends as in Fig. 6a. 

 

    
 

                                (a)                                                                (b)                                                                    (c) 
 

Fig. 5.  Ambiguity surfaces of MVDR-MFP (a), MCMVDR-MFP (b), and RRMVDR-MFP (c) algorithms. 
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(a)                                                                                        (b) 

Fig. 6. Peak-to-background ratios of with SNR of 10 dB (a) and -10 dB (b). 

6.2. Sequential execution time 

The sequential execution times of the MCMVDR-MFP and RRMVDR-MFP algorithms are measured on a 
single processing unit in the testbed.  Figs. 7a and 7b illustrate the sequential execution times versus the 
number of sensor nodes and the number of faulty sensor nodes, respectively.  In Fig. 7a, the system size 
varies from eight to 32 nodes and none of the nodes are faulty.  In Fig. 7b, the system size is fixed at 32 
nodes but the number of faulty nodes varies from zero to eight. 

As shown in Fig. 7a, the sequential execution time results demonstrate that the steering stage is the 
most computationally dominant stage because the complexity of the steering stage is much higher than that 
of other stages due to the substantial number of grid points.  As the number of nodes increases, the 
sequential execution times in the two robust algorithms is linearly increased since the steering stage 
includes the replica vector generation task whose computational complexity is linear in terms of the number 
of nodes as described in Section 3.  When there is no faulty node, the sequential execution time of 
MCMVDR-MFP is slightly higher than that of RRMVDR-MFP since the steering stage of MCMVDR-
MFP has a higher computational load in comparison to RRMVDR-MFP as shown in Table 1. 
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Fig. 7.  Sequential execution time per iteration versus system size (a) and number of faulty nodes (b). 
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Fig. 7b depicts the sequential execution times of the two robust algorithms in terms of the number of 

faulty nodes.  The steering stage is the most computationally dominant stage as in Fig. 7a.  As the number 
of faulty nodes increases, the sequential execution time of MCMVDR-MFP rapidly increases but that of 
RRMVDR-MFP does not because computational complexity of the steering stage in MCMVDR-MFP is 
linearly increased as the number of faulty nodes increases but not in RRMVDR-MFP.  From these 
experimental results, it can be inferred that the RRMVDR-MFP algorithm is computationally more 
efficient than the MCMVDR-MFP algorithm when there are faulty nodes in the distributed array systems. 

6.3. Parallel execution time 

Figs. 8a and 8b illustrate the parallel execution times of all four combinations of parallel and robust 
algorithms with the same system configurations as in Fig. 7.  Of course, here the nodes perform both 
sensing and processing.  As shown in Fig. 8a, the execution times of all the fault-tolerant parallel 
algorithms are only slowly increased as system size increases with no faulty nodes since computational 
complexities of these parallel algorithms are reduced by a factor of N in the steering stage when compared 
to the sequential algorithms.  The DFD algorithm requires a larger message size than the DSD algorithm.  
As a result, communication time with the DFD algorithm increases with increase in system size on the PC 
cluster.  The steering stage is still the only computationally dominant stage except in RRMVDR-DSD as 
was shown in Fig. 7a.  As the number of nodes increases, the parallel execution time of the ED stage in 
RRMVDR-DSD is rapidly increased since the sequential bottleneck of this stage highly increases the 
parallel execution time as discussed in Section 4. 
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                                 (a)                                                                                                       (b)  

Fig. 8.  Parallel execution time per iteration versus system size (a) and number of faulty nodes (b). 

Fig. 8b shows the parallel execution times of fault-tolerant parallel algorithms where the number of 
faulty nodes varies from zero to eight and the number of nodes is fixed at 32.  The parallel execution times 
of MCMVDR-DFD are largely increased as the number of faulty nodes increases because the 
computational complexity of MCMVDR is linearly dependent on the number of faulty nodes as shown in 
Table 1 and there is an imbalanced workload distribution in DFD.  In particular, as the number of faulty 
nodes increases from zero to two, execution time of DFD is rapidly increased.  When workloads of the 
faulty nodes are reassigned to non-faulty nodes, there is a workload imbalance between non-faulty nodes 
because the number of frequency bins is not large enough to distribute their beamforming tasks into all 
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non-faulty nodes evenly.  For instance, if there are two faulty nodes in the case where the number of 
frequency bins is 64 and the number of nodes is 32 as in this experiment, beamforming tasks of the four 
frequency bins assigned to the two faulty nodes have to be reassigned to other non-faulty nodes.  Hence, 
four non-faulty nodes perform the beamforming tasks for three frequency bins while all the other non-
faulty nodes do the same for two frequency bins.  However, as the number of faulty nodes increases, the 
communication time of DFD is slightly decreased because the faulty nodes are not included in the 
communication.  The execution times of MCMVDR-DSD are lower than those of MCMVDR-DFD 
because DSD provides more balanced workload distribution than DFD when the workloads of the faulty 
nodes are reassigned into non-faulty nodes.  DSD reallocates workloads for all grid points (i.e., 3200 grid 
points in this case) into all the non-faulty nodes more evenly than DFD since the granularity of a parallel 
task in DSD is much smaller than DFD.  

The execution times of RRMVDR-DFD are much lower than those of the two MCMVDR algorithms 
because the computational complexity of RRMVDR is not increased as shown in Table 1 as the number of 
faulty nodes increases.  However, as the number of faulty nodes increases from zero to two, the execution 
time of RRMVDR-DFD is rapidly increased as in MCMVDR-DFD due to the imbalanced workload 
distribution in DFD.  In addition, as the number of faulty nodes increases from two to eight in RRMVDR-
DFD, the parallel execution times stay about the same as those of the others since their workload imbalance 
situations are the same as in these faulty-node configurations.  The execution times of RRMVDR-DSD are 
slightly higher than those of RRMVR-DFD because the execution time of the ED stage in RRMVDR-DSD 
involves a large portion to the overall parallel execution time since the ED stage is not parallelized.  
Furthermore, as the number of faulty nodes increases, the parallel execution times of RRMVDR-DSD are 
slightly increased.  The reason is that the workloads assigned to all the non-faulty nodes are increased in 
DSD since the faulty nodes are excluded from parallel processing in the distributed array system. 

6.4. Speedup  

Fig. 9a illustrates the scaled speedup of the fault-tolerant parallel algorithms measured on the PC cluster.  
Scaled speedup is defined as the ratio of sequential execution time to parallel execution time.  This 
performance metric takes into account the fact that the problem size is also increased as the number of 
processing nodes is increased, since each node has its own sensor.  All the fault-tolerant parallel algorithms 
except RRMVDR-DSD exhibit promising scaled speedup as system size increases.  The speedup of 
RRMVDR-DSD does not scale as well with system size since the sequential ED stage considerably 
increases the parallel execution time as discussed in Section 4.  The MCMVDR-DSD algorithm shows 
marginally better scaled speedup than the other algorithms because DSD exhibits a lower communication 
overhead than DFD due to its small message size and the sequential bottleneck of the INV stage in 
MCMVDR is lower than that of the ED stage in RRMVDR. 

The speedup of the fault-tolerant parallel algorithms is examined in Fig. 9b where the number of faulty 
nodes varies from zero to eight and system size is fixed at 32 nodes.  From the results, as expected, it can 
be seen that speedup of all the fault-tolerant algorithms decreases as the number of faulty nodes increases 
because the faulty nodes are excluded from parallel processing thereby causing an imbalance in workload 
distribution in DFD.  The other reasons are that the computational load of MCMVDR is increased and the 
overall processing power of the distributed array system is naturally decreased with the fixed system size as 
the number of faulty nodes increases.  For instance, speedup of DFD abruptly decreases as the number of 
faulty nodes varies from zero to two due to its severe imbalanced workload assignment as described in 
Section 6.3.  However, as the number of faulty nodes increases from two to eight in DFD, the speedup stays 
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about the same as that of the others since their workload imbalance situations are the same as in these 
faulty-node configurations.  

6.5. Parallel efficiency 

Parallel efficiency is the ratio of speedup over ideal speedup, which is equal to the number of processors.  
This performance metric is employed to examine the average utilization of all processors throughout the 
entire execution of parallel programs.  The parallel efficiency versus the number of nodes with no faulty 
node is shown in Fig. 10a.  Fig. 10b illustrates the parallel efficiency versus the number of faulty nodes 
with a fixed system size of 32 nodes.  With no faulty nodes, all the fault-tolerant parallel algorithms except 
RRMVDR-DSD achieve a promising parallel efficiency between 93% and 99% for the given system.  
However, as shown in Fig. 10b, the four fault-tolerant parallel algorithms exhibit lower parallel efficiency 
than the no-faulty-node case because there is a workload imbalance between the non-faulty nodes in DFD.  
The computational load of MCMVDR is increased and the processing power of the distributed array 
systems is reduced when the number of faulty nodes is increased.  The MCMVDR-DSD algorithm achieves 
marginally better parallel efficiency than other algorithms since it provides better balanced workload 
distribution and efficient communication when there are faulty nodes. 
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Fig. 9.  Speedup versus system size (a) and number of faulty nodes (b). 
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Fig. 10.  Parallel efficiency versus system size (a) and number of faulty nodes (b). 
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7. Conclusions  

For real-time sonar systems operating in severe underwater environments, high-performance and fault-
tolerant parallel processing techniques are required in order to meet real-time and high reliability 
requirements in the presence of processor and sensor failures.  In this paper, four efficient fault-tolerant 
parallel algorithms are presented to tolerate node failures in distributed sonar array systems with graceful 
degradation.  The four fault-tolerant parallel algorithms are based on dynamic domain decomposition 
methods and achieve low overhead, minimum redundancy, and fast recovery time for adaptive MFP 
algorithms in distributed array systems.  The performance of the fault-tolerant parallel algorithms is 
investigated in terms of execution time, speedup, and parallel efficiency on a distributed testbed. 

The parallel fault-tolerant algorithms achieve promising parallel performance with low overhead by 
using an application-level fault tolerance method for the given system sizes and a varying number of faulty 
nodes in a fixed system size.  The experimental results demonstrate that, with no faulty nodes, all the fault-
tolerant parallel algorithms except RRMVDR-DSD achieve a promising parallel efficiency between 93% 
and 99% for given system sizes.  However, the four fault-tolerant parallel algorithms with faulty nodes 
obtain lower parallel performance than with no faulty node because there is a workload imbalance between 
processing nodes in DFD and the computational load of MCMVDR is increased as the number of faulty 
nodes increases.  Naturally, the overall processing power of the distributed array system is decreased with 
the fixed system size as the number of faulty nodes increases.  The MCMVDR-DSD algorithm achieves 
marginally better parallel efficiency than the other algorithms since it provides more balanced workload 
distribution and efficient communication load.  Given the increasing demands for high-performance and 
dependability in distributed sonar systems, these fault-tolerant parallel algorithms can provide real-time, 
lightweight, and fault-tolerant implementations for adaptive MFP algorithms on distributed sonar array 
systems. 

For future research, the fault-tolerant parallel algorithms presented in this paper can be extended to 
more enhanced and sophisticated forms of beamforming algorithms to tolerate node failures.  The fault-
tolerant parallel algorithms need to be integrated with a fault detection method not included in this research 
to provide more reliable fault-tolerant implementations in distributed sonar array systems. 
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